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It is shown that the period of auto-oscillations may be sensitive to minor changes in the para-

meters of the biochemical system, for example, the activity of a key enzyme. An assumption

is advanced on the possibility of evolutionary fixation in circadian rhythms of the properties
of such critical endogenous oscillatory systems.

INTRODUCTION

THE literature, now voluminous [1], concerned with the biological clock and its mathe-
matical models discusses the problem of evolutionary origin of biological rhythm.
Circadian rhythms (considered as forced) are contrasted [2] with endogenous. It is con-
sidered almost axiomatic that these rhythms are of a different nature. It is implicitly
assumed that the tremendous differences in the periods—days for circadian rhythms
and fractions of a second for metabolic—automatically preclude even the posing of the
problem of their generality.

Nevertheless, serious biological and mathematical grounds exist for discussing
the problem of the evolutionary secondary nature of the circadian rhythms produced
in the main by the daily periodicity of the light flux. However, photosynthesis appeared
without any doubt in evolution considerably later than the other metabolic systems
(for example, glycolytic). These systems had their own rhythms in no way connected
with astronomical phenomena. It is, therefore, natural to suppose that circadian fluctu-
ations appeared on the basis of the already existing endogenous rhythmic patterns.

But if qualitatively such arguments are realistic then the quantitative gap
1 day
N=—"=86,400,
1 second

which separates the metabolic and circadian rhythms appears unbridgable. For most
known physical phenomena or technical devices such a quantitative difference implies
a different nature of the fluctuation.

* Biofizika 16: No. 5, 878-883, 1971.
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The aim of the present paper is to show that the biochemical systems may embrace
tremendous frequency ranges (or amplitudes) on the basis of a single mechanism by a
small change in its parameters. At the level of the organism a good illustration may be
afforded by the organs of vision and hearing. The cause, mathematically speaking,
consists in the fundamental non-linearity of biological and, in particular, biochemical
systems.

2. MODEL OF THE GLYCOLYTIC SYSTEM
The author of [3] constructed a mathematical model of the glycolytic system. With

certain simplifying assumptions the set of differential equations describing the kinetics
of glycolysis has the form:

dx
at =ﬁ—x)’z}

. 1
; [ )
2 xyroy
dt

This set was numerically investigated with a computer with an acceptable accuracy
(taking into account the approximate nature of the model). However, theoretical
analysis was made only as a linear approximation and the qualitative picture was errone-
ously sketched. (The authors of the present paper (under whose guidance the work of
Ye. Ye. Sel’kov was carried out) also bear responsibility for this. The error in the main
is corrected in the article submitted for the attention of the reader. A more detailed
publication is planned.) Yet the full analysis of the set (1) is highly instructive. It has
a direct bearing on the theme under discussion on the relationship between endogenous
and circadian rhythms. The most important aspect of this analysis is study of the
system as a whole. This feature psychologically sharply conflicts with the usual practice
of investigating physical systems when it suffices to study the small periphery of the
steady state. The root of the error mentioned, we would note in parenthesis, lies in the
habit of local investigation.

3. SPECIAL POINTS “TO INFINITY"

The phasic portrait of the system as a whole is more graphically depicted not in the
initial variables but in variables similar to those of Poincare:

X
b=r-—5—
1+x%24y2 @
e
1+x*+y?

reflecting the whole plane (x, y) on a single circle of the plane (&, n). For our purpose
it suffices to consider a semi-circle since the trajectories beginning in the upper semi-
plane are entirely accomodated in it. Below them the solution “is forbidden”:

y=0, (3)
which our system has.



Endogenous biochemical fluctuations as the basis of physiological rhythms 915

In the semi-circle 770 the system studied has five special points (Fig. 1). One of them,
point F, corresponding to the steady state,

— 2_
P @

is located within the semi-cricle and the others are at the boundary. The merit of Poin-
care’s variables is that these boundary special points become “clearly visible”. In the
initial variables it is easy to find only the steady point F:

1

x=—
, &)
y=8
while the others are infinitely removed. Yet the kinetics of the system is determined
by the structure precisely of these points.

The result of investigation of these points, the details of which we shall omit, is pre-
sented in Fig. 1. The infinitely removed special points retain their type for all values of
the parameter . As against this, the point F corresponding to the steady state and stable
for B>1 loses stability when f passes through the “linear” critical value.

B=1. (6)

As B at the top approaches unity the steady state becomes ever less stable. At the critical
point there is “mild” generation of an auto-oscillatory regime—in this sense we are
dealing with the “linear’ critical value. The limiting cycle is generated with a zero
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Fic. 1 FiG. 2
FiG. 1. Special points in Poincare semi-circle. For > 1 steady point F is stable.

FiG. 2. Dependence on logarithmic scale of various periods on the parameter f: [—period of linear-
ized fluctuations close to stable steady state; II—same for unstable state (for f<1); III—period of
auto-oscillations.

amplitude and “inherits” the period of low linear oscillation—the so-called character-
istic time of the system. With rise in the amplitude of the auto-oscillations the difference
between the period of the limiting cycle and the “characteristic time” of the system
increases (Fig. 2).
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It is therefore understandable that the very term ‘“‘haracteristic time” of the system
is quite inapt in such situations since it is characteristic only of a certain small periphery
of the steady (now unstable) state.

4. CRITICAL NON-LINEAR STATE

Numerical methods allow us to investigate the behaviour of the limiting cycle in
relation to # immediately after generation of the auto-oscillatory state. (The communica-
tion by L. M. Kogan, L. V. Lunevskaya, A. M. Molchanov and Ye. Ye. Sel’kov was

c

D N .
A A D
FiG. 3 FiG. 4
FiG. 3. Separatrices form semi-stable limiting cycle “bull’s eye” to use the terminology of Poincare.
F1G. 4. Formation of limiting cycle on rupture of loop of separatrices.

presented to the Scientific Council of the Institute of Biological Physics, U.S.S.R.
Academy of Sciences in Pushchino in 1970. The authors are grateful to G. A. Oskov
for assitance.) However, direct numerical count very rapidly becomes impossible be-
cause of the sudden increase (with reduction in ) in the period and amplitude of the
auto-oscillations. The need arises for theoretical analysis of the situation. This analysis
reveals the existence of a further “non-linear” critical value of the parameter

B=8*, (7
determined by the condition of fusion of two separatices. One of them, CN, passes out
of the saddle C and separates the flux coming from the node B from the flux occurring
in the loop CD. The second separatrix MD separates the incoming and traversing
curves in the vicinity of the complex special point—the saddle node D.

The fusion of the separatrices corresponds to the “equilibrium” of the two fluxes.
The flux from B is wholly poured into D. The flux from the unstable focus F fills the
loop CD twisting from within towards the semi-stable limiting cycle composed of the
two separatrices. One begins in C and ends in D and the other is entirely accommodated
in infinity—begins in D and ends in C. This remarkable situation is depicted in Fig. 3.

Change in the parameter f shifts the equilibrium. Small increase in this parameter
leads to “flow”” within the loop CD of a fine jet of the flux B. It “ousts” the flux F from
the vicinity of the point D. The limiting cycle appears which is greater the closer the
value of § to the critical (Fig. 4).

Reduction in f§ leads to the opposite effect. The flux F “breaks through” behind
the separatrix flowing into D and discharges entirely into this special point. The closer
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A D

Fi1G. 5. Flux F ousts trajectories of flux B from loop CD.

p to p* the more revolutions do the curves of the flux F perform before rushing to D.
However, this is only a reminder of the destructive limiting cycle which no longer
exists for < p* (Fig. 5).

Numerical search for the critical value f* represents a difficult problem of calcula-
tion consisting, in particular, in the search for the asymptotic resolutions of the separa-
trices of the points C and D. In addition, the instability of the count “from saddle
to saddle” makes it necessary to resort to special procedures of calculation.

Nevertheless, in principle the critical value f=pf* is similar to the “linear” critical
value f=1 in that they both determine the boundaries of stability of the steady states.
The first relates to the limiting cycle and the second to the steady point. And both are
therefore the roots of the equation

ReA(B)=0, 8)

where A(f)—inherent value determining the small fluctuations close to the steady state.

However, the stability of the steady point is determined by investigation of the
algebraic equation. This property is local. Stability of the limiting cycle leads to study
of the integral equations. This property is global. It is clear that such problems, typical
apparently of biochemical systems, are more interesting, more difficult and more
varied.

CONCLUSIONS

The example discussed illustrates the important feature of biochemical systems—
sharp dependence of the characteristics of an auto-oscillatory state on the parameters
of the system. Thus, for example, the period of auto-oscillations 7" has time to change
from 2% to co:

2n<T< + 0,

with reduction in f from the first (“linear”) critical value to the second (‘‘non-linear”)
1>8>p*.

The calculations show that g* differs only by tens of percentages,
B*~09,
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from unity—*“the linear” critical value. Of course, not every non-linear system possesses
such striking lability of the period. The system studied has a special individual feature—it
belongs to the class of non-crude systems. One of its special points (namely D) for all
values of the parameter f remains a complex special point—a saddle node—not break-
ing down into a saddle and a node. Practically any refinement of this undoubtedly
approximate model will unfailingly lead to such breakdown. Of course, the period of
the auto-oscillatory system is also stabilized—the variability will no longer be so sharp.
The system discussed is a particular case of a considerably wider class of “flow”
systems:
dx ]
Py =S(x,y)—A(x,y)
®
dy _
E =A(x,y)—P(x,y)
These equations describe the kinetics of the following events. From the outside (and
in the context of the present study it is not important to know from where and how)
the flux S of the “substrate of the reaction x”* is directed into the system. Then the “mech-
anism A of converting x to a semi-manufactured product” is actuated. Finally, the
substance y is converted by the “mechanism P” into a certain “whole product” the na-
ture and fate of which is of no interest to us. It, in particular, may coincide with y
and the mechanism P (in this case) is the mechanism of release of the product from the
system.
In our particular case
S=p
A=xy*) " (10)
P=y

This system well illustrates the general thesis [4] on the “difficult conditions” as the
cause of the appearance of auto-oscillations. In this case the auto-oscillations appear
when the system is “put on a hunger ration”. In the system is ‘“‘embodied” the com-
petitive contradiction between the mechanisms A4 and P each of which requires the ““semi-
manufactured product” y but the mechanism A4 processes this compound while its
flux P is taken out of the system. In addition, the ‘“‘quadratic’® mechanism 4 is stronger
than the “linear” mechanism P at high concentrations of y and at low, on the other
hand, P is stronger than A.

As a 1esult, for large (f>1) fluxes of the substrate, the mechanism A has time
to “work up” a sufficient amount of y both for itself and for P. The system operates
in the steady state.

Small (f<1) fluxes of S are a different matter. It is necessary to wait a long time
for an appreciable vitalization of 4—until a sufficient quantity of substrate x “flows”
to the system. However, increase in the production of y causes its rapid expulsion by the
flux P. The productivity of A again falls. The system “drops” into the oscillatory
state.
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If we further reduce S the damage to the mechanism A becomes irreversible (for
B<B*). The flux P monotonically falls with slow unrestricted accumulation of the sub-
strate x in the system. It is no longer capable of functioning.

These simple ideas admit of an evolutionary interpretation. It may be assumed
that originally before the advent of photosynthesis various metabolic systems existed
including “those entailing a miserable existence”. Their oscillatory character not only
did no good to them but was, as it were, a “‘mark of poverty”. Among them were the
most diverse and, in particular, those with periods close to daily. The latter were quite
“weak” (a large period, in our example, denotes closeness to the fatal limit). However,
after the appearance of photosynthesis with its forced daily rhythm they survived reso-
nating with this external rhythm. We have no room here to discuss the details of the
specific mechanism of survival.

The crux of the matter is the provision of a wide field of activity for the main cre-
ative force—natural selection. The difficult conditions (in this case the drop of the
flux of the substrate) create a wide range of properties (in this case an unlimited set
of periods of auto-oscillations) over which natural selection may “‘work”.

The author is grateful for the useful discussion to many persons, in particular,
V. L. Davydov, G. P. Kreitser, G. A. Ososkov, Ye. Ye. Sel’kov and E. E. Shnol’,
although they did not bear any responsibility for the perhaps risky speculations of the
final paragraph.
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